| 动能定理解决多过程问题 题目答案及解析

稿件来源:高途

| 动能定理解决多过程问题题目答案及解析如下,仅供参考!

必修2

第七章 机械能守恒定律

7.7 动能和动能定理

动能定理解决多过程问题

如图所示,截面为矩形的管状滑槽$ABC$固定在竖直平面内,$AB$段水平,内底面粗糙,$BC$段是半圆弧,内表面光滑,直径$BC$$AB$垂直。质量$m=2\;\rm kg$的滑块以初速度$v_{0}$$A$点开始沿滑槽向右运动,滑块刚好能到达$C$点。已知滑块与$AB$段间的动摩擦因数$\mu =0.2$$AB$段长度$L=4\rm m$,圆弧半径$R=0.5\;\rm m$,滑块可视为质点,$g$$10\;\rm m/s^{2}$。求:

滑块的初速度$v_{0}$的大小;

[["

滑块的初速度$v_{0}$的大小为$6\\;\\rm m/s$

"]]

滑块刚好到达$C$点时速度为零,对滑块从$A$$C$过程,根据动能定理得:$- \mu mgL - 2mgR = 0 - \dfrac{1}{2}mv_{0}^{2}$

解得:$v_{0}=6\;\rm m/s$

滑块运动到$B$点时对滑槽的压力$F$的大小。

[["

滑块运动到$B$点时对滑槽的压力$F$的大小为$100\\;\\rm N$

"]]

对滑块从$A$$B$过程,根据动能定理得:$- \mu mgL = \dfrac{1}{2}mv_{B}^{2} - \dfrac{1}{2}mv_{0}^{2}$

设在$B$点轨道对物块的支持力为$N$,根据牛顿第二定律可得:$N - mg = m\dfrac{v_{B}^{2}}{R}$

由牛顿第三定律,可知滑块对滑槽的压力的大小为$F=N=100\;\rm N$

| 动能定理解决多过程问题题目答案及解析(完整版)

去刷题
今日推荐