| 动量守恒之木板滑块模型 题目答案及解析

稿件来源:高途

| 动量守恒之木板滑块模型题目答案及解析如下,仅供参考!

选修3-5

第十六章 动量守恒定律

16.3 动量守恒定律

动量守恒之木板滑块模型

如图甲所示,长木板$A$放在光滑的水平面上,质量为$m=4\;\rm kg$的另一物体$B$(可看成质点)以水平速度$v_{0}=2\;\rm m/s$滑上原来静止的长木板$A$的上表面。由于$A$$B$间存在摩擦,之后$A$$B$速度随时间变化情况如图乙所示,$g$$10\;\rm m/s^{2}$,则下列说法正确的是$(\qquad)$

["

木板获得的动能为$2\\;\\rm J$

","

系统损失的机械能为$4\\;\\rm J$

","

木板$A$的最小长度为$2\\rm \\;m$

","

$A$$B$间的动摩擦因数为$0.1$

"]
[["ABD"]]

$\rm A$、由图乙可知,物体$B$和长木板$A$最终共速,共同速度大小$v=1\;\rm m/s$,设木板的质量为$M$,取向右为正方向,由动量守恒定律有

$mv_{0}=(m+M)v$

解得:$M=4\;\rm kg$

则木板获得的动能为

$E_{k}$$= \dfrac{1}{2}Mv^{2} = \dfrac{1}{2} \times 4 \times 1^{2}\;\rm J=2\;\rm J$,故$\rm A$正确;

$\rm B$、系统损失的机械能为$\Delta E$$= \dfrac{1}{2}{mv}_{0}^{2} - \dfrac{1}{2}(m+M)v^{2}$,解得:$\Delta E=4\;\rm J$,故$\rm B$正确;

$\rm CD$、当物体$B$恰好到达长木板右端时,木板的长度最短,由$v﹣t$图像与时间轴所围的面积表示位移可知,当物体与木板共速时,物体的对地位移为$x_{B} = \dfrac{1}{2} \times 1 \times (2 + 1)\;\rm m = 1.5\;\rm m$

长木板的对地位移为$x_{A} = \dfrac{1}{2} \times 1 \times 1\;\rm m = 0.5\;\rm m$

则木板的最小长度为

$L=x_{B}-x_{A}=1.5\;\rm m-0.5\;\rm m=1\;\rm m$

由能量守恒定律有$\mu mgL = \dfrac{1}{2}mv_{0}^{2} - \dfrac{1}{2}(m + M)v^{2}$

解得:$\mu =0.1$,故$\rm C$错误,$\rm D$正确。

故选:$\rm ABD$

| 动量守恒之木板滑块模型题目答案及解析(完整版)

去刷题
相关题库:
如图所示,水平地面上放有木板、,木板的右侧有竖直墙,板长度为,木板与地面间的动摩擦因数,可视为质点的物块静置于木板的左端。不可伸长的轻绳一端系于点,另一端拴一小球,钉子位于物块的正上方,间距等于绳长的一半,连线与水平方向的夹角初始锁定木板,将小球从绳水平拉直的位置由静止释放,到达最低点时与静止的物块发生碰撞,碰后小球反弹到达最高点时,轻绳刚好离开钉子;物块滑至木板右端时,二者共速,且此时木板与木板发生碰撞;碰后木板恰好能返回初始位置。已知木板和物块的质量均为,所有碰撞均为弹性碰撞,物块与两木板间的动摩擦因数相同,重力加速度大小。求: 如图所示,光滑水平面中间有一光滑凹槽,质量为、长度小于的木板放置在凹槽内,其上表面恰好与水平面平齐。开始时木板静置在凹槽左端处,其右端与凹槽右端有一定的距离。水平面左侧有质量分别为与的物块、,某时刻物块获得初动能,与物块发生弹性碰撞后,物块滑上木板,木板到达前、已共速,其后与的碰撞均为弹性碰撞。已知物块与木板间的动摩擦因数为,重力加速度为,求: 如图所示,水平地面上放有木板、,木板的右侧有竖直墙,板长度为,木板与地面间的动摩擦因数为,可视为质点的物块静置于木板的左端。不可伸长的轻绳一端系于点,另一端拴一小球,钉子位于物块的正上方,间距等于绳长的一半,连线与水平方向的夹角初始锁定木板,将小球从绳水平拉直的位置由静止释放,到达最低点时与静止的物块发生碰撞,碰后小球反弹到达最高点时,轻绳刚好离开钉子;物块滑至木板右端时,二者共速,且此时木板与木板发生碰撞;碰后木板恰好能返回初始位置。已知木板和物块的质量均为,所有碰撞均为弹性碰撞,物块与两木板间的动摩擦因数相同,重力加速度大小。求: 如图所示,固定的桌面、地面和固定的螺旋形圆管均光滑,轻质弹簧左端固定,自然伸长位置为点,弹簧的劲度系数,圆轨道的半径,圆管的内径比质量为的小球直径略大,但远小于圆轨道半径,质量为的小物块静止于质量为的木板左端,木板的上表面恰好与圆管轨道水平部分下端表面等高,小物块与木板上表面间的动摩擦因数,木板右端与墙壁之间的距离,现用力将小球向左推压,将弹簧压缩,然后由静止释放小球,小球与弹簧不连接,小球运动到桌面右端点后水平抛出,从管口点处沿圆管切线飞入圆管内部,从圆管水平部分点飞出,并恰好与小物块发生弹性碰撞,经过一段时间后木板和右侧墙壁发生弹性碰撞,已知小物块始终未和墙壁碰撞,并且未脱离木板,已知与竖直方向夹角,,,,。求: 某兴趣小组在研究物体在水面上运动时所受阻力的课题时,做了如图所示的实验。图中为一个充水的水池,水池左侧有四分之一光滑圆弧轨道。一质量的小物块从圆弧轨道的最上端静止释放,小物块运动至轨道底端时,恰好以水平速度冲上停靠在水池左侧木板的上表面。已知木板质量,长度,小物块与木板上表面间的动摩擦因数,圆弧轨道的半径,重力加速度取,小物块可视为质点,木板一直漂浮在水面,忽略小物块冲上木板后木板在竖直方向上的运动。 如图所示,左端为四分之一圆弧的木板静止置于光滑水平面上,圆弧与木板水平部分相切于点。在木板右端固定一轻弹簧,其自由端位于木板上点正上方,将质量为的小物块(可视为质点)自点上方高度为处的某点静止释放,沿切线进入圆弧,已知长木板质量为,圆弧的半径为,,段粗糙,与小物块间的动摩擦因数为,其余部分均光滑。重力加速度为。
今日推荐